A block Krylov subspace time-exact solution method for linear ODE systems

نویسنده

  • M. A. Botchev
چکیده

We propose a time-exact Krylov-subspace-based method for solving linear ODE (ordinary differential equation) systems of the form y = −Ay + g(t) and y = −Ay + g(t), where y(t) is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of the source term g(t), constructed with the help of the truncated SVD (singular value decomposition). The second stage is a special residual-based block Krylov subspace method. The accuracy of the method is only restricted by the accuracy of the piecewise polynomial approximation and by the error of the block Krylov process. Since both errors can, in principle, be made arbitrarily small, this yields, at some costs, a time-exact method. Numerical experiments are presented to demonstrate efficiency of the new method, as compared to an exponential time integrator with Krylov subspace matrix function evaluations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block Krylov subspace exact time integration of linear ODE systems. Part 1: algorithm description

We propose a time-exact Krylov-subspace-based method for solving linear ODE (ordinary differential equation) systems of the form y ′ = −Ay+g(t), where y(t) is the unknown function. The method consists of two stages. The first stage is an accurate polynomial approximation of the source term g(t), constructed with the help of the truncated SVD (singular value decomposition). The second stage is a...

متن کامل

A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form y D Ay C g.t/ and y D Ay C g.t/, where y.t/ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of the source term g.t/, constructed with the help of the truncated singular value decomposition. The se...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

The block grade of a block Krylov space

The aim of the paper is to compile and compare basic theoretical facts on Krylov subspaces and block Krylov subspaces. Many Krylov (sub)space methods for solving a linear system Ax = b have the property that in exact computer arithmetic the true solution is found after ν iterations, where ν is the dimension of the largest Krylov subspace generated by A from r0, the residual of the initial appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012